Augmented Heat Transfer in a Recovery Passage Downstream From a Grooved Section: An Example of Uncoupled Heat/Momentum Transport

Author:

Greiner M.1,Chen R.-F.1,Wirtz R. A.1

Affiliation:

1. Mechanical Engineering Department, University of Nevada, Reno, NV 89557

Abstract

Earlier experiments have shown that cutting transverse grooves into one surface of a rectangular cross-sectional passage stimulates flow instabilities that greatly enhance heat transfer/pumping power performance of air flows in the Reynolds number range 1000 < Re < 5000. In the current work, heat transfer, pressure, and velocity measurements in a flat passage downstream from a grooved region are used to study how the flow recovers once it is disturbed. The time-averaged and unsteady velocity profiles, as well as the heat transfer coefficient, are dramatically affected for up to 20 hydraulic diameters past the end of the grooved section. The recovery lengths for shear stress and pressure gradient are significantly shorter and decrease rapidly for Reynolds numbers greater than Re = 3000. As a result, a 5.4-hydraulic-diameter-long recovery region requires 44 percent less pumping power for a given heat transfer level than if grooving continued.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. Blair M. F. , 1983, “Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development: Part I—Experimental Data; Part II,—Analysis of Results,” ASME JOURNAL OF HEAT TRANSFER, Vol. 105, pp. 33–47.

2. Chen, R.-F., 1993, “Experimental Investigation of Passive Flow Destabilization and Heat Transfer Enhancement in Grooved Channels,” Ph.D. Dissertation, University of Nevada, Reno, NV.

3. Greiner, M., Karniadakis, G. E., Mikic, B. B., and Patera, A. T., 1988, “Heat Transfer Augmentation and Hydrodynamic Stability Theory: Understanding and Exploitation,” Heat Transfer: Korea—US Seminar on Thermal Engineering and High Technology, ed. J. H. Kim, T. R. Ro, and T. S. Lee, Hemisphere Publishing Corp., New York, pp. 31–50.

4. Greiner M. , ChenR. F., and WirtzR. A., 1990, “Heat Transfer Augmentation Through Wall-Shape-Induced Flow Destabilization,” ASME JOURNAL OF HEAT TRANSFER, Vol. 112, pp. 336–341; also in:

5. Greiner M. , ChenR. F., and WirtzR. A., Heat Transfer in Convective Flows, ASME HTD-Vol. 107, 1989, pp. 337–342.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3