Trajectory Tracking and Rate of Penetration Control of Downhole Vertical Drilling System

Author:

Ghasemi Masood1,Song Xingyong2

Affiliation:

1. Department of Engineering Technology and Industrial Distribution, College of Engineering, Texas A&M University, College Station, TX 77843 e-mail:

2. Assistant Professor Department of Engineering Technology and Industrial Distribution; Department of Mechanical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

This paper investigates a nonlinear control design for trajectory tracking and rate of penetration (ROP) control of the vertical downhole drilling process. The drilling system dynamics are first built incorporating the coupled axial and torsional dynamics together with a velocity-independent drill bit–rock interaction model. Given the underactuated, nonlinear, and nonsmooth feature of the drilling dynamics, we propose a control design that can prevent significant downhole vibrations, enable accurate tracking, and achieve desired rate of penetration. It can also ensure robustness against modeling uncertainties and external disturbances. The controller is designed using a sequence of hyperplanes given in a cascade structure. The tracking control is achieved in two phases, where in the first phase the drilling system states converge to a high-speed drilling regime free of stick–slip behavior, and in the second phase, the error dynamics can asymptotically converge. Finally, we provide simulation results considering different case studies to evaluate the efficacy and the robustness of the proposed control approach.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3