Analysis of the Honeywell Uncertified Research Engine With Ice Crystal Cloud Ingestion at Simulated Altitudes

Author:

Jorgenson Philip C. E.1,Veres Joseph P.2,Nili Samaun1,Bommireddy Shashwath R.3,Suder Kenneth L.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135

2. SoftInWay Switzerland, GmbH, Retiree, Formerly NASA Glenn Research Center, Cleveland, OH 44135

3. Cleveland State University, LERCIP, NASA Glenn Research Center, Cleveland, OH 44135

Abstract

Abstract The Honeywell Uncertified Research Engine (HURE), a research version of a turbofan engine that never entered production, was tested in the NASA Propulsion Systems Laboratory (PSL), an altitude test facility at the NASA Glenn Research Center. The PSL is a facility that is equipped with water spray bars capable of producing an ice cloud consisting of ice particles, having a controlled particle diameter and concentration in the airflow. To develop the test matrix of the HURE, the numerical asw analysis of flow and ice particle thermodynamics was performed on the compression system of the turbofan engine to predict operating conditions that could potentially result in a risk of ice accretion due to ice crystal ingestion. The goal of the test matrix was to provide operating conditions such that ice would accrete either in the fan-stator through the inlet guide vane region of the compression system or within the first stator of the high-pressure compressor. The predictive analyses were performed with the mean-line compressor flow modeling code (comdes-melt) which includes an ice particle model. The HURE engine was tested in PSL with the ice cloud over the range of operating conditions of altitude, ambient temperature, simulated flight Mach number, and fan speed with guidance from the analytical predictions. The engine was fitted with video cameras at strategic locations within the engine compression system flow path where ice was predicted to accrete in order to visually confirm ice accretion when it occurred. In addition, traditional compressor instrumentation, such as total pressure and temperature probes, static pressure taps, and metal temperature thermocouples, were installed in targeted areas where the risk of ice accretion was expected. The current research focuses on the analysis of the data that were obtained after testing the HURE engine in PSL with ice crystal ingestion. The computational method (comdes-melt) was enhanced by computing key parameters through the fan-stator at multiple spanwise locations in order to increase the fidelity with the current mean-line method. The Icing Wedge static wet-bulb temperature thresholds were applied for determining the risk of ice accretion in the fan-stator, which is thought to be an adiabatic region. At some operating conditions near the splitter–lip region, other sources of heat (non-adiabatic walls) were suspected to be the cause of accretion, and the Icing Wedge was not applied to predict accretion at that location. A simple order-of-magnitude heat transfer model was implemented into the comdes-melt code to estimate the wall temperature minimum and maximum thresholds that support ice accretion, as observed by video confirmation. The results from this model spanned the range of wall temperatures measured on a previous engine that experienced ice accretion at certain operating conditions. The goal of this study is to show that the computational process developed on earlier engine icing tests can be used to provide an icing risk assessment in adiabatic regions for other engines.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3