Effect of Purge on the Secondary Flow-Field of a Gas Turbine Blade-Row

Author:

Schreiner B. D. J1,Wilson M.1,Li Y. S.2,Sangan C. M.1

Affiliation:

1. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

2. Siemens Industrial Turbomachinery Ltd, Lincoln, LN57FD, UK

Abstract

Abstract Turbine disc cooling is required to protect vulnerable components from exposure to the high temperatures found in the mainstream gas path. Purge air, bled from the latter stages of the compressor, is introduced to the turbine wheelspace at low radius before exiting through the rim-seal at the periphery of the discs. The unsteady, complex flowfield that arises from the interaction between the purge and mainstream gases modifies the structure of secondary flows within the blade passage. A computational study was conducted using an unsteady Reynolds-averaged Navir–Stokes (RANS) solver, modeling an engine-representative turbine stage. Preliminary results were validated using experimental data from a test rig. The baseline secondary flowfield was described, in the absence of purge flow, demonstrating the classical rollup of the horseshoe vortex and subsequent convection of the two legs downstream. The unsteady behavior of the model was investigated and addressed, resulting in recommendations for modeling interaction phenomena in turbines. A superposed purge flow, resulting in egress through the upstream rim-seal, was shown to modify the secondary flowfield in the turbine annulus. The most notable effect of egress was the formation of a large plume forming near the pressure minima associated with the blade suction surface. The egress was turned by the mainstream flow, creating a vortical structure consistent in rotational direction to the pressure-side leg of the horseshoe vortex; the pressure-side leg was subsequently strengthened and showed an increased radial migration relative to the unpurged case. The egress plume was also shown to overwhelm the suction-side leg of the horseshoe vortex, reducing its strength.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Reference23 articles.

1. Loss Mechanisms in Turbomachines;Denton;ASME J. Turbomach.,1993

2. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages;Sieverding;ASME J. Eng. Gas Turbines Power,1985

3. Secondary Flows in Axial Turbines—A Review;Langston;Ann. N. Y. Acad. Sci.,2001

4. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades;Sharma;ASME J. Turbomach.,1987

5. The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine;Snedden,2009

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3