A Numerical Study Into the Use of Auxectic Structures for Structural Damping in Composite Sandwich Core Panels for Wind Turbine Blades

Author:

Khalid Seher Ahsan1,Khan Abdul Munem1,Shah Owaisur Rahman2

Affiliation:

1. Department of Aerospace Engineering, Institute of Space Technology, Islamabad 44000, Pakistan

2. Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan

Abstract

Abstract The ever-increasing demand for energy necessitates the use of renewable energy sources such as wind energy. Wind turbines are widely used to convert wind energy into electrical and mechanical energy, with designs constantly being improved to increase efficiency and power. The turbine blades are considered as long cantilever structures, which are susceptible to vibrations that reduce the performance of the turbine. Honeycomb and closed cell foam sandwich structures have been previously used for turbine blade planking. In this research work, the use of an auxetic core instead of a honeycomb core is proposed for use in wind turbine blades to reduce structural vibrations. Different auxetic topologies are investigated and compared with the half-power method, and their vibration and damping behavior is analyzed in comparison with the conventional honeycomb core. It has been shown through finite element analysis simulations that both the damping ratios are higher and the vibration amplitudes are lower for the auxetic as compared with conventional closed celled structures like honeycombs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3