Influence of Fin Parameters on Melting and Solidification Characteristics of a Conical Shell and Tube Latent Heat Storage Unit

Author:

Kalapala Lokesh1,Devanuri Jaya Krishna1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India

Abstract

Abstract Augmenting meting and solidification rates of latent heat storage unit (LHSU) is very much essential for its efficient operation. By the effective utilization of natural convection, rate of heat transfer can be enhanced and the conical shell is beneficent in this regard. Using fins further improves the charging and discharging rates. Hence, the current study is focused on analyzing melting and solidification characteristics of a conical shell and tube LHSU along with the effect of fin parameters viz., fin diameter and number of fins. Numerical analysis is chosen for this purpose and the performance is compared via melting/solidification times, energy stored, energy/exergy efficiencies. Initially, the performance of unfinned conical shell is compared with the cylindrical shell without fins and then the effect of fin parameters is presented. For melting process conical shell is found to be superior to cylindrical shell. 34.46% reduction in melting time is noted by using conical shell and rate of energy stored is also higher for conical shell. Increase in fin diameter caused an increase in melting time when 20 number of fins are used, whereas melting time got decreased with the increase in fin diameter when five number of fins are used. Hence, when a greater number of fins are used, lesser diameter is preferred for melting. For discharging process, conical shell took 60% more time than cylindrical shell. Even after using fins, solidification time is not drastically reduced in comparison with cylindrical shell.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3