Prediction of Electromigration Critical Current Density in Passivated Arbitrary-Configuration Interconnect

Author:

Kimura Yasuhiro1,Saka Masumi2

Affiliation:

1. Department of Finemechanics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579, Japan e-mail:

2. Department of Finemechanics, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579, Japan

Abstract

A critical current density, a criterion of electromigration (EM) resistance in interconnects, above which EM damages initiate has been studied to minimize EM damages of interconnects. In general, the assessment of a critical current density is confined to straight interconnect called as Blech specimen, although the critical current density is sensitive to structural characteristic. This work proposes a procedure of predicting a critical current density for any arbitrary-configuration interconnect by using the analogy between atomic density and electrical potential. In the models of straight and barrel interconnects as the typical solder bumps in modern flip-chip technology, the critical current density is predicted through calculating electrical potential by proposed formulation and simulation based on the finite element analysis (FEA). The critical current density for straight interconnect obtained by experiment leads to numerically calculate the critical electrical potential, which is independent of interconnect configuration. The critical potential corresponds to the critical atomic density, below which the accumulation of atoms allows. The calculated critical electrical potential determines a critical current density for arbitrary-configuration interconnect including current crowding effect. This finding can predict a critical current density for actual arbitrary-configuration model and provide an insight for the applying to the packaging design such as ball grid array and C4 flip-chip solder bumps.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3