Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity

Author:

Saini Deepak1,Sandberg Richard D.1

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

Abstract The focus of the present study is to understand the effect of Rayleigh number on a high Rossby number flow in a high-pressure compressor inter-disk cavity. These cavities form between the compressor disks of a gas turbine engine, and they are an integral part of the internal air cooling system. We perform highly resolved large-eddy simulations for two Rayleigh numbers of 0.76 × 108 and 1.54 × 108 at a fixed Rossby number of 4.5 by solving the compressible Navier–Stokes equations. The results show a flow structure dominated by a toroidal vortex in the inner region of the cavity. In the outer region, the flow is observed to move radially outwards by Ekman layers formed on the side disks and to move radially inwards through the central core region of the cavity. An enhancement in the intensity of the radial flares is observed in the outer region of the cavity for the high Rayleigh number case with no perceivable effect in the inner region. The near-shroud region is mostly dominated by the centrifugal buoyancy-induced flow and the wall Nusselt number calculated at the shroud is in close agreement with centrifugal buoyancy-induced flow without an axial bore flow.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3