Deviations Due to Non-Newtonian Influences Within a Miniature Viscous Disk Pump

Author:

Ligrani Phil1,Jiang Hui,Lund Benjamin,Jin Jae Sik2

Affiliation:

1. Oliver L. Parks Endowed Chair Director of Graduate Programs e-mail:

2. Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, MO 63103

Abstract

A miniature viscous disk pump (VDP) is utilized to characterize and quantify non-Newtonian fluid deviations due to non-Newtonian influences relative to Newtonian flow behavior. Such deviations from Newtonian behavior are induced by adding different concentrations of sucrose to purified water, with increasing non-Newtonian characteristics as sucrose concentration increases from 0% (pure water) to 10% by mass. The VDP consists of a 10.16 mm diameter disk that rotates above a C-shaped channel with inner and outer radii of 1.19 mm, and 2.38 mm, respectively, and a channel depth of 200 μm. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Within the present study, experimental data are given for rotational speeds of 1200–2500 rpm, fluid viscosities of 0.001–0.00134 Pa s, pressure rises of 0–220 Pa, and flow rates up to approximately 0.00000005 m3/s. The theory of Flumerfelt is modified and adapted for application to the present VDP environment. Included is a new development of expressions for dimensionless volumetric flow rate, and normalized local circumferential velocity for Newtonian and non-Newtonian fluid flows. To quantify deviations due to the magnitude non-Newtonian flow influences, a new pressure rise parameter is employed, which represents the dimensional pressure rise change at a particular flow rate and sucrose concentration, as the flow changes from Newtonian to non-Newtonian behavior. For 5% and 10% sucrose solutions at rotational speeds of 1200–2500 rpm, this parameter increases as the disk dimensional rotational speed increases and as the volumetric flow rate decreases. Associated magnitudes of the pressure difference parameter show that the fluid with the larger sucrose concentration (by mass) produces significantly larger differences between Newtonian and non-Newtonian fluid flow, for each value of dimensional volumetric flow rate. For each disc rotational speed, compared to Newtonian data, dimensional pressure rise variations with dimensional volumetric flow rate, which are associated with the non-Newtonian data, are generally lower when compared at a particular volumetric flow rate. Agreement with analytic results, for any given flow rate, rotational speed, and flow passage height, validates the shear stress model employed to represent non-Newtonian behavior, as well as the analytic equations and tools (based upon the Navier–Stokes equations) which are employed to predict measured behavior over the investigated range of experimental conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Reference45 articles.

1. A Valve-Less Planar Fluid Pump With Two Pump Chambers;Sens. Actuators A,1995

2. A Thermal Bubble Actuated Micro Nozzle-Diffuser Pump;J. Microelectromech. Syst.,2002

3. Miniature Valveless Pumps Based on Printed Circuit Board Technique;Sens. Actuators A,2001

4. Thin Film Shape-Memory Alloy Actuated Micropumps;J. Microelectromech. Syst.,1998

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3