Evaluation of Compressor Blading With Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade

Author:

Tang Yumeng1,Liu Yangwei23,Lu Lipeng23

Affiliation:

1. National Key Laboratory of Science and Technology on Aero-Engine, Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China

2. National Key Laboratory of Science and Technology on Aero-Engine, Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China;

3. Collaborative Innovation Center of Advanced, Aero-Engine, Beihang University, Beijing 100191, China

Abstract

Abstract Blade end slots were proposed to control corner separation in a highly loaded compressor cascade in our previous studies. This study focuses on the evaluation of compressor blading with blade end slots and full-span slots. First, the two-dimensional configuration performance is evaluated both for the datum and slotted profiles. The slotted configuration could effectively suppress separation, especially under positive incidence conditions when the separation is large. Thus, two three-dimensional blading with full-span slots and blade end slots (20% span height from the endwall) are compared. Results show that blading with full-span slots could effectively reduce the loss and enlarge pressure rise under relative high incidence angles, while blading with blade end slots could effectively reduce the loss and enlarge pressure rise above an incidence angle of −4 deg. Blading with slots alters the flow structures and reorganizes the flow in the blade end regions. The self-adaptive jets from the slots reenergize the low-momentum flow downstream and restrain its migration toward the mid-span, so that the corner separation is reduced and the performance is enhanced. The loss for the end slotted blade is lower than that of the full-span slotted blade under incidence angles within 4 deg. This is because the additional mixing loss of the jet and the main flow are caused by the full-span slots at the mid-span regions where the flow remains attached for the blade end slots.

Funder

Aeronautical Science Foundation of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3