Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine

Author:

Kielb Jason J.1,Abhari Reza S.2

Affiliation:

1. Rolls-Royce, Indianapolis, IN

2. Swiss Federal Institute of Technology, Zurich, Switzerland

Abstract

Damping in turbomachinery blades has been an important parameter in the study of forced response and high cycle fatigue, but because of its complexity the sources and physical nature of damping are still not fully understood. This is partly due to the lack of published experimental data and supporting analysis of real rotating components. This paper presents the results of a unique experimental method and data analysis study of multiple damping sources seen in actual turbine components operating at engine conditions. The contributions of both aerodynamic and structural damping for several different blade vibration modes, including bending and torsion, were determined. Results of the experiments indicated that aerodynamic damping was a large component of the total damping for all modes. A study of structural damping as a function of rotational speed was also included to show the effect of friction damping at the blade and disk attachment interface. To the best of the authors’ knowledge, the present paper is the first report of independent and simultaneous structural and aerodynamic damping measurement under engine-level rotational speeds.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insight into Damping Sources in Turbines;Fatigue of Aircraft Structures;2022-12-01

2. Experimental Nonlinear Vibration Analysis of a Shrouded Bladed Disk Model on a Rotating Test Rig;Nonlinear Structures and Systems, Volume 1;2019-06-29

3. On the occurrence of self-synchronization of autooscillations of turbocompressor rotor blades;Journal of Machinery Manufacture and Reliability;2009-12

4. Aeroelastic Instability of Low-Pressure Rotor Blades;Progress in Industrial Mathematics at ECMI 2006;2008

5. Optimum Strain Gage Application to Bladed Assemblies;Journal of Turbomachinery;2002-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3