A Thermodynamic Analysis of Tubular SOFC Based Hybrid Systems

Author:

Rao A. D.1,Samuelsen G. S.1

Affiliation:

1. University of California, Irvine, CA

Abstract

The goals of a research program recently completed at the University of California, Irvine were to develop analysis strategy for Solid Oxide Fuel Cell (SOFC) based systems, to apply the analysis strategy to tubular SOFC hybrid systems and to identify promising hybrid configurations. A pressurized tubular SOFC combined with an intercooled-reheat gas turbine (SureCell™ cycle) is chosen as the Base Cycle over which improvements are sought. The humid air turbine (HAT) cycle features are incorporated to the Base Cycle resulting in the SOFC-HAT hybrid cycle which shows an efficiency of 69.05% while the Base Cycle has an efficiency of 66.23%. Exergy analysis identified the superior efficiency performance of the SOFC component. Therefore, an additional cycle variation added a second SOFC component followed by a low pressure combustor in place of the reheat combustor of the gas turbine of the SOFC-HAT hybrid. The resulting Dual SOFC-HAT hybrid has a thermal efficiency of 75.98%. The Single SOFC-HAT hybrid gives the lowest cost of electricity (3.54¢/kW-hr) while the Dual SOFC-HAT hybrid has the highest cost of electricity (4.02¢/kW-hr) among the three cycles with natural gas priced at $3/GJ. The Dual SOFC-HAT hybrid plant cost is calculated to be significantly higher because the fraction of power produced by the SOFC(s) is significantly higher than that in the other cases on the basis of $1100/kw initial cost for the SOFC. The Dual SOFC-HAT hybrid can only be justified in favor of the Single SOFC-HAT hybrid when price of natural gas is greater than $14/GJ or if a severe carbon tax on the order of $180/ton of CO2 is imposed while natural gas price remains at $3/GJ.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3