Characterization of Confined Swirl Flows Using Large Eddy Simulations

Author:

Schlüter Jörg1,Schönfeld Thilo1,Poinsot Thierry1,Krebs Werner2,Hoffmann Stefan2

Affiliation:

1. CERFACS, Toulouse, France

2. Siemens AG KWU, Mülheim, Germany

Abstract

Since the flame of high intense low NOx gas turbine combustion systems is stabilized by swirl, the analysis of the swirl flow is very crucial to the design and optimization of such combustion systems. Although a huge amount of publications have been provided on this field just a few have used Large Eddy Simulation due to limits in computer resources. Using Large Eddy Simulation the large vortical structure of the flow is resolved leading to a much better insight of the flow features. Hence, in this paper the Large Eddy Simulation has been applied to investigate the non reacting confined swirling flow downstream of a gas turbine burner. A high accuracy of the prediction of the full three dimensional simulation could be pointed out by comparison of the computational results to measurements. Further the large vortical structure and the dynamic behavior of the flow has been analyzed. The formation of a precessing vortex core is visualized. Due to the precessing motion of the central recirculation zone an alternate vortex shedding at the edges of the burner nozzle is induced. From LES Strouhal numbers for the vortex shedding process are calculated which are confirmed by hot wire measurements.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3