Ceramic Stationary Gas Turbine Development Program: Eighth Annual Summary

Author:

Price Jeffrey1,Jimenez Oscar1,Miriyala Narendernath1,Kimmel Josh B.1,Leroux Don R.1,Fahme Tony1

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA

Abstract

The Ceramic Stationary Gas Turbine (CSGT) program has been performed under the sponsorship of the United States Department of Energy, Office of Industrial Technologies and Office of Power Technologies. The objective of the program was to improve the performance of stationary gas turbines in cogeneration by retrofitting uncooled ceramic components into the hot section of the engine. The replacement of previously cooled metallic hot section components with the uncooled ceramics enables improved thermal efficiency, increased output power, and reduced gas turbine emissions. This review summarizes the latest progress on Phase III of the program, which involves 1) preparation for the final in-house CSGT engine test of ceramic blades, nozzles and CFCC liners, and 2) field testing of the CFCC combustor liners at two cogeneration end user sites. The field testing of CFCC combustor liners is now being performed under the Advanced Materials Program, sponsored by DOE, Office of Power Technologies. The Solar Centaur 50S engine, which operates at a turbine rotor inlet temperature (TRIT) of 1010°C, was selected for the developmental program. The program goals include an increase in the TRIT to 1121°C, accompanied by increases in thermal efficiency and output power. This is to be accomplished by the incorporation of ceramic first stage blades and nozzles, and a “hot wall” ceramic combustor liner. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The “hot wall” ceramic liners also enable a reduction in gas turbine emissions of NOx and CO. This 1121°C TRIT engine test of the ceramic hot section is planned for the first quarter of 2001. The component design and material selection have been previously definitized for the ceramic blades, nozzles and combustor liners. Each of these ceramic component designs was successfully evaluated in short-term engine tests in the Centaur 50S engine test cell facility at Solar. Environmental barrier coatings for the ceramic components are also being optimized. To date, seven field installations of the CSGT Centaur 50S engine totaling over 30,000 hours of operation have been initiated under the program at two industrial cogeneration sites. This paper briefly discusses the recent developmental efforts for the upcoming 1121°C TRIT engine test, but focuses on the various field demonstrations of CFCC combustor liners.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3