A New Axial Compressor Test Facility for the Investigation of Aerodynamic Damping Featuring an Electromagnetic Excitation System

Author:

Buchwald Patrick1,Müller Fabian F.1,Günther Maiken11,Vogt Damian M.1

Affiliation:

1. University of Stuttgart ITSM Institute of Thermal Turbomachinery and Machinery Laboratory, , Stuttgart 70569 , Germany

Abstract

Abstract Aerodynamic damping simulations involving detailed computational fluid dynamics (CFD) models are nowadays an integral part of turbomachinery design processes, thanks to advancements made in simulation tools and in computer hardware over the last decades. However, the test cases available in the open literature suitable for the validation and continued development of simulation tools is rather limited. On this background, a new test facility is introduced that allows acquiring relevant and high-quality aerodynamic damping test data on axial compressor rotor test objects in a controlled manner. The test facility is built as a closed loop and thus enables operation at variable pressure levels ranging from near-vacuum to overpressure and with different operating media. Overall damping test data are acquired at controlled synchronous and nonsynchronous vibration conditions. While vibrations of the blades at controlled nonsynchronous vibration conditions can be introduced in the test facility by means of a proprietary electromagnetic excitation system that is acting below the hub line, vibrations at controlled synchronous conditions can be introduced from a set of magnets integrated into the casing. Great care has been spent to create a clean test case without any intruding parts or openings in the test section. In addition, an axial compressor blisk is presented, which acts as test object to show the capabilities of the test facility as well as to allow for detailed investigations of aerodynamic damping. While the first part of the article discusses the setup and the instrumentation of the test facility to excite and measure blade vibration in a nonintrusive way, flow-field measurements and the validation accompanying steady-state Reynolds-averaged Navier-Stokes (RANS) simulations are shown in the second part. The third part of the article focuses on aerodynamic damping measurements for seven different modes at three different pressure levels in total. It can be shown that aerodynamic damping is by far the largest contributor to the overall damping.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3