Construction of Short-Time Heat Conduction Solutions in One-Dimensional Finite Rectangular Bodies

Author:

de Monte Filippo1,Woodbury Keith A.2,Najafi Hamidreza3

Affiliation:

1. Department of Industrial and Information Engineering and Economics, University of L'Aquila , L'Aquila 67100, Italy

2. Mechanical Engineering Department, University of Alabama , Tuscaloosa, AL 35487

3. Department of Mechanical and Aerospace Engineering, Florida Tech. , Melbourne, FL 32901

Abstract

Abstract The concept of both penetration and deviation times for rectangular coordinates along with the principle of superposition for linear problems allows short-time solutions to be constructed for a one-dimensional (1D) rectangular finite body from the well-known solutions of a semi-infinite medium. Some adequate physical considerations due to thermal symmetries with respect to the middle plane of a slab to simulate homogeneous boundary conditions of the first and second kinds are also needed. These solutions can be applied at the level of accuracy desired (one part in 10A, with A = 2, 3, …, 15) with respect to the maximum temperature variation (that always occurs at the active surface and at the time of evaluation) in place of the exact analytical solution to the problem of interest consisting of an infinite number of terms and, hence, unapplicable.

Publisher

ASME International

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3