Microstructural Alterations of Rolling—Bearing Steel Undergoing Cyclic Stressing

Author:

Martin J. A.1,Borgese S. F.1,Eberhardt A. D.1

Affiliation:

1. Research Laboratory, S K F Industries, Inc., Engineering and Research Center, King of Prussia, Pa.

Abstract

After prolonged cyclic stressing in rolling contact, AISI 52100 bearing steel parts develop extensive regions of microstructural alteration, designated as white etching areas. These are oriented in predictable directions relative to the rolling track. Lenticular carbides are always associated with these areas. Evidence is presented indicating that the boundaries of lenticular carbides constitute planes of weakness which may be preferred planes of fatigue cracking. In the transmission electron microscope the martensitic structure appears gradually transformed into a cell like structure by the action of cyclic stress. The size of crystallites is greatly reduced in this process. The density of microstructural change is found increased with cycling and is distributed in depth along a curve resembling that of the calculated maximum unidirectional shear stress with little or no visible change in the region of maximum orthogonal (alternating) shear stress.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3