Application of Ambarzumian’s Method to Radiant Interchange in a Rectangular Cavity

Author:

Crosbie A. L.1,Sawheny T. R.1

Affiliation:

1. Thermal Radiative Transfer Group, Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, Mo.

Abstract

Ambarzumian’s method had been used for the first time to solve a radiant interchange problem. A rectangular cavity is defined by two semi-infinite parallel gray surfaces which are subject to an exponentially varying heat flux, i.e., q = q0 exp(−mx). Instead of solving the integral equation for the radiosity for each value of m, solutions for all values of m are obtained simultaneously. Using Ambarzumian’s method, the integral equation for the radiosity is first transformed into an integro-differential equation and then into a system of ordinary differential equations. Initial conditions required to solve the differential equations are the H functions which represent the radiosity at the edge of the cavity for various values of m. This H function is shown to satisfy a nonlinear integral equation which is easily solved by iteration. Numerical results for the H function and radiosity distribution within the cavity are presented for a wide range of m values.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiant heat transfer between grey surfaces: an alternative approach;International Journal of Heat and Mass Transfer;2001-01

2. Solution ofH-Equations by Iteration;SIAM Journal on Mathematical Analysis;1979-07

3. A Closed-Form Solution for the Radiosity at the Edge of a Rectangular Cavity;Journal of Heat Transfer;1976-02-01

4. Radient Interchange in a Nonisothermal Rectangular Cavity;AIAA Journal;1975-04

5. Heat transfer bibliography;International Journal of Heat and Mass Transfer;1975-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3