Affiliation:
1. Thermal Radiative Transfer Group, Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, Mo.
Abstract
Ambarzumian’s method had been used for the first time to solve a radiant interchange problem. A rectangular cavity is defined by two semi-infinite parallel gray surfaces which are subject to an exponentially varying heat flux, i.e., q = q0 exp(−mx). Instead of solving the integral equation for the radiosity for each value of m, solutions for all values of m are obtained simultaneously. Using Ambarzumian’s method, the integral equation for the radiosity is first transformed into an integro-differential equation and then into a system of ordinary differential equations. Initial conditions required to solve the differential equations are the H functions which represent the radiosity at the edge of the cavity for various values of m. This H function is shown to satisfy a nonlinear integral equation which is easily solved by iteration. Numerical results for the H function and radiosity distribution within the cavity are presented for a wide range of m values.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献