Analysis of Turbulence Characteristics in Two Large Concentric Annular Ducts Through Particle Image Velocimetry

Author:

Hernández-Cely Marlon M.1,Baptistella Victor E. C.1,Rodriguez Oscar M. H.1

Affiliation:

1. Industrial Multiphase Flow Laboratory (LEMI), Mechanical Engineering Department, São Carlos School of Engineering, University of São Paulo (USP), Trabalhador São Carlense 400, São Carlos 13566-570, SP, Brazil e-mail:

Abstract

An experimental study is presented on water single-phase flow in two 10.5 m-long annular ducts, with external pipe's internal diameter (De) of 155 mm and two concentric internal pipes of external diameters (Di) of 60 mm and 125 mm, i.e., radius ratio (α = Ri/e) of 0.39 and 0.80, respectively, with the aim of improving the understanding of flows in annular ducts. Particle image velocimetry (PIV) was applied to obtain instantaneous and averaged velocity measurements of the flow field. A charge-coupled device camera (2448 pixel × 2050 pixel, 5 Mpixel, 12-bit ) recorded pairs of images of the seeding particles and a double-pulsed PIV laser (Nd:YAG, frequency doubled to 532 nm), with a measured pulse intensity of 70 to 75 mJ/pulse, provided the illumination. Laminar flows were analyzed for validation purposes, experimental data on turbulent flows were compared with the classical law of the wall of the turbulent boundary-layer model, and the shear stresses derived from PIV data were compared with those calculated from the measured pressure drop. The effects of the Reynolds number and geometry on turbulent velocity profiles and Reynolds stresses are presented. The results suggest that the law of the wall for annular-duct flow is a function of radius ratio. The new experimental results are of great value for the development of computational fluid dynamics models and more refined pressure-drop prediction tools in annular-duct flow.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3