Calibration and Uncertainty Quantification of Gas Turbine Performance Models

Author:

Chao Manuel Arias1,Lilley Darrel S.1,Mathé Peter2,Schloßhauer Volker2

Affiliation:

1. Alstom Power, Baden, Switzerland

2. Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

Abstract

Calibration and uncertainty quantification for gas turbine (GT) performance models is a key activity for GT manufacturers. The adjustment between the numerical model and measured GT data is obtained with a calibration technique. Since both, the calibration parameters and the measurement data are uncertain the calibration process is intrinsically stochastic. Traditional approaches for calibration of a numerical GT model are deterministic. Therefore, quantification of the remaining uncertainty of the calibrated GT model is not clearly derived. However, there is the business need to provide the probability of the GT performance predictions at tested or untested conditions. Furthermore, a GT performance prediction might be required for a new GT model when no test data for this model are available yet. In this case, quantification of the uncertainty of the baseline GT, upon which the new development is based on, and propagation of the design uncertainty for the new GT is required for risk assessment and decision making reasons. By using as a benchmark a GT model, the calibration problem is discussed and several possible model calibration methodologies are presented. Uncertainty quantification based on both a conventional least squares method and a Bayesian approach will be presented and discussed. For the general nonlinear model a fully Bayesian approach is conducted, and the posterior of the calibration problem is computed based on a Markov Chain Monte Carlo simulation using a Metropolis-Hastings sampling scheme. When considering the calibration parameters dependent on operating conditions, a novel formulation of the GT calibration problem is presented in terms of a Gaussian process regression problem.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning to Update Engine Models with Deep Reinforcement Learning;2023 6th International Symposium on Autonomous Systems (ISAS);2023-06-23

2. Real-time model calibration with deep reinforcement learning;Mechanical Systems and Signal Processing;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3