Numerical Simulations on Flow Separation Within an Axial Turbine at Very Low Reynolds Number

Author:

Wang Xiaodong1,Liang Liping1,Kang Shun1

Affiliation:

1. North China Electric Power University, Beijing, China

Abstract

Reynolds number has significant impact on the aerodynamic performance of axial turbines. The internal flow within the stator of a low pressure turbine could be all laminar when the inlet Reynolds number is very low, and large flow separation may occur on the suction surface of the blade. The separated laminar boundary layer and the wake have strong unsteady interactions with the main flow in rotor passages. In order to investigate the laminar flow separation and the interaction, both laminar flow simulation and detached eddy simulation (DES) have been performed on a low speed axial turbine under a very low Reynolds number condition in this paper. For comparison, fully laminar modeling, transitional modeling and fully turbulent modeling are performed, also. The comparison between the computational results and the experimental results shows that both the laminar modeling and transition modeling can capture the laminar separation on the suction side of the stator blade accurately. The separation region locates in a thin zone strengthening from the blade tip to the hub, which is induced by the tip passage vortex. The separation generates a high turbulence intensity zone at the stator outlet. However, this zone in laminar simulation is smaller than that in the experimental due to the absence of turbulence disturbances. Fully turbulent modeling predicts a delayed separation and a smaller separation region. Detached eddy simulation is performed for single stator row, which gives better predictions for both the flow separation and high turbulent zone. The detailed flow structures of the secondary vortices of the stator, the rotor passage vortex and the tip leakage vortex are illustrated. The simulation results show that the laminar separation has obvious three dimensional behaviour. The radial movement of the horse shoe vortex is the main disturbance to the flow separation.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3