Failure of a Test Rig Operating With Pressurized Gas Bearings: A Lesson on Humility

Author:

San Andrés Luis1,Rohmer Michael1,Park Sangshin2

Affiliation:

1. Texas A&M University, College Station, TX

2. Yeungnam University, Gyungsan, Kyungbuk, Korea

Abstract

Process fluid lubrication of rotating machinery offers advantage of compactness and efficiency while dispensing with complicated oil lubricant supply systems. Prior work in a dedicated test rig demonstrated the performance of water lubricated radial and thrust bearings into high speed and high load conditions. The application related to a high performance rocket engine turbo pump. The test rig was revamped to operate with gas bearings in a program aiming to measure the performance of gas thrust bearings. The gas bearings for lateral support of the rotor are of hybrid type (hydrostatic/hydrodynamic) with flexure pivots and multiple ports for inlet gas pressurization. The paper details the design of the flexure pivot bearings and predictions of the lateral rotordynamics of the rotor supported on the hybrid gas bearings. Troubleshooting operation of the test rotor supported on the novel gas bearings followed with preliminary runs with the bearings supplied with air at 7.9 bar, then 6.5 bar and at 5.1 bar, and shaft speeds to 25 krpm (surface speed=50 m/s). The data recorded showed a very lightly damped system with a critical speed at ∼6 krpm, and susceptible to excite sub synchronous whirl motions when operating above the first critical speed. Ignoring the initial warnings, the operator persisted in operating the rotor to a high speed of 28 krpm while lowering the air supply pressure to 5.1 bar into the bearings. Suddenly, the shaft experienced large amplitude sub synchronous whirl motions, contacted the bearings, and produced a catastrophic failure. The incident produced much damage including a broken coupling, a twisted rotor, sheared covers, and welded pads into the bearing casing. Post-mortem analysis shows the failure is due to a sub synchronous whirl instability of the first rigid body rotor-bearing mode also exacerbated by the rotor approaching second natural frequency of the rotor-bearing system. The rotordynamics model includes the rotor rigidly connected to a long quill shaft and coupling produces results in agreement with the last vibration data set acquired prior to the incident. The experience demonstrates the need for following proper operating procedures while also paying attention to early evidence that could have prevented the mishap.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3