Oxide/Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

Author:

Kiser J. Douglas1,Bansal Narottam P.1,Szelagowski James1,Sokhey Jagdish (Jack)2,Heffernan Tab2,Clegg Joseph2,Pierluissi Anthony2,Riedell Jim3,Wyen Travis4,Atmur Steven5,Ursic Joseph6

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

2. Rolls-Royce North American Technologies, Inc. (LibertyWorks®), Indianapolis, IN

3. COI Ceramics, Inc., San Diego, CA

4. AFRL/RQVV, WPAFB, OH

5. COI Ceramics, Inc., Rocket Center, WV

6. ZIN Technologies, Inc., Brook Park, OH

Abstract

LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). In April 2010, the NASA Glenn Research Center (GRC) and Rolls-Royce (RR) jointly initiated a CMC Exhaust System Validation Program within the ERA Project, teaming on CMC exhaust mixers for subsonic jet engines. The initial objective was to fabricate and characterize the performance of a 0.25 scale low bypass exhaust system that was based on a RR advanced design, with a 16-lobe oxide/oxide CMC mixer and tail cone (center body). Support Services, LLC (Allendale, MI) and COI Ceramics, Inc. (COIC) supported the design of a mixer assembly that consisted of the following oxide/oxide CMC components mounted on separate metallic attachment flanges: a) a lobed mixer and outer fan shrouds, and b) a tail cone. TRL 4 (Component/Subscale Component Validation in a Laboratory Environment) was achieved in a cost-effective manner through subscale rig validation of the aerodynamic and acoustic performance via testing at ASE FluiDyne (Plymouth, MN) and at NASA GRC, respectively. This encouraged the NASA/ RR/COIC team to move to the next phase of component development; full scale CMC mixer design for a RR AE3007 engine. COIC fabricated the full scale CMC mixer, which was vibration tested at GRC under conditions simulating the structural and dynamic environment of a mixer. Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) provided test support by assisting with instrumentation and performing 3D laser vibrometry to identify the mixer mode shapes and modal frequencies over the engine operating range. Successful vibration testing demonstrated COIC’s new process for fabricating full scale CMC mixers and the durability of the Oxide CMC component at both room and elevated temperatures. A TRL≈5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3