Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Experimental Results

Author:

Chenaux Virginie Anne1,Zanker Achim2,Ott Peter2

Affiliation:

1. German Aerospace Center (DLR), Göttingen, Germany

2. Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract

A reliable determination of the unsteady aerodynamic loads acting on the blades is essential to predict the aeroelastic stability of vibrating compressor cascades with accuracy. At transonic flow conditions, the vibration of the shock may change the blade aeroelastic behavior. Numerical tools still have difficulties to capture the physics associated to this effect. In order to increase the prediction’s accuracy, high quality experimental data at high spatial resolution is therefore required to enable the calibration and validation of these tools. Within the frame of the European project FUTURE, experimental aeroelastic investigations were performed on a transonic compressor cascade in the Non-Rotating Annular Test Facility at EPFL. Associated to the measurements, the numerical flutter prediction procedure was applied. This paper focuses on the experimental results. The experimental database gained during the project is presented and aims at helping the aeroelastic community to develop and improve their flutter prediction capabilities. The test model consists of twenty prismatic blades. Each blade of the cascade assembly was mounted on an elastic spring element enabling harmonic bending vibrations in the twenty possible cascade’s travelling wave modes. Large efforts were made to improve the measuring techniques and to provide high quality data at relatively high spatial resolution. For various sub- and transonic flow conditions, steady-state and unsteady blade surface pressure distributions were measured to evaluate the local contributions to the blade stability in terms of local aerodynamic work. The blade global aerodynamic stability is determined applying an integration of all unsteady pressure signals measured over the airfoil.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3