Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle

Author:

Cho Seong Kuk1,Kim Minseok1,Baik Seungjoon1,Ahn Yoonhan1,Lee Jeong Ik1

Affiliation:

1. Korea Advanced Institute of Science and Technology, Daejeon, Korea

Abstract

The supercritical CO2 (S-CO2) power cycle has been receiving attention as one of the future power cycle technology because of its compact configuration and high thermal efficiency at relatively low turbine inlet temperature ranges (450∼750°C). Thus, this low turbine inlet temperature can be suitable for the bottoming cycle of a combined cycle gas turbine because its exhaust temperature range is approximately 500∼600°C. The natural gas combined cycle power plant utilizes mainly steam Rankine cycle as a bottoming cycle to recover waste heat from a gas turbine. To improve the current situation with the S-CO2 power cycle technology, the research team collected various S-CO2 cycle layouts and compared each performance. Finally, seven cycle layouts were selected as a bottoming power system. In terms of the net work, each cycle was evaluated while the mass flow rate, the split flow rate and the minimum pressure were changed. The existing well-known S-CO2 cycle layouts are unsuitable for the purpose of a waste heat recovery system because it is specialized for a nuclear application. Therefore, the concept to combine two S-CO2 cycles was suggested in this paper. Also the complex single S-CO2 cycles are included in the study to explore its potential. As a result, the net work of the concept to combine two S-CO2 cycles was lower than that of the performance of the reference steam cycle. On the other hand, the cascade S-CO2 Brayton cycle 3 which is one of the complex single cycles was the only cycle to be superior to the reference steam cycle. This result shows the possibility of the S-CO2 bottoming cycle if component technologies become mature enough to realize the assumptions in this paper.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3