Adaptive Surrogate-Based Multi-Disciplinary Optimization for Vane Clusters

Author:

Arsenyev Ilya1,Duddeck Fabian1,Fischersworring-Bunk Andreas2

Affiliation:

1. Technische Universität München, München, Germany

2. MTU Aero Engines, München, Germany

Abstract

The presented work is part of a research project aimed towards multi-disciplinary robust shape optimization of low pressure turbine (LPT) vane clusters. Multi-disciplinary analysis for vane cluster optimization is used to evaluate design constraints, involving 3D aerodynamic Navier-Stokes simulation, transient thermal analysis, structural analysis and life prediction. The expense of these simulations combined with high-dimensional design space, makes the application of gradient-based or stochastic optimizers inefficient. To overcome these issues, a surrogate-based optimization approach is proposed here. High quality surrogate models are required for accurate description of the constraints with life prediction. Adaptive Global Surrogate-Based Optimizer, based on Gaussian-Process (GP) surrogate models and Expected Improvement infill criteria is employed, which allows to efficiently increase the surrogate quality while approaching the optimal solution at the same time. Additional techniques are introduced to deal with the geometry rebuild failure, as some combinations of the design parameters may produce infeasible geometry. The adaptive optimization method is successfully applied to the multi-disciplinary problem for the vane cluster shape optimization. The comparison of the method performance with a gradient-based optimizer indicates that a much lower number of true simulations is needed by the proposed method to find an optimal design. Successful optimization results shows the ability of the method to handle simulation crashes, caused by geometry rebuild failure.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Dimensional Bayesian Optimization Assisted by Principal Component Analysis;Parallel Problem Solving from Nature – PPSN XVI;2020

2. Multidisciplinary Optimization of Compressor Stage with Different Parameterization Methods;AIAA Propulsion and Energy 2019 Forum;2019-08-16

3. Experimental Compressor Multidisciplinary Optimization Using Different Parameterization Schemes;EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization;2018-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3