Affiliation:
1. Alstom Power, Baden, Switzerland
Abstract
Highly competitive and volatile energy markets are currently observed, as resulting from the increased use of intermittent renewable sources. Gas turbine combined cycle power plants (CCPP) owners therefore require reliable, flexible capacity with fast response time to the grid, while being compliant with environmental limitations. In response to these requirements, a new operation concept was developed to extend the operational flexibility by reducing the achievable Minimum Environmental Load (MEL), usually limited by increasing pollutant emissions.
The developed concept exploits the unique feature of the GT24/26 sequential combustion architecture, where low part load operation is only limited by CO emissions produced by the reheat (SEV) burners. A significant reduction of CO below the legal limits in the Low Part Load (LPL) range is thereby achieved by individually switching the SEV burners with a new operation concept that allows to reduce load without needing to significantly reduce both local hot gas temperatures and CCPP efficiency.
Comprehensive assessments of the impact on operation, emissions and lifetime were performed and accompanied by extensive testing with additional validation instrumentation. This has confirmed moderate temperature spreads in the downstream components, which is a benefit of sequential combustion technology due to the high inlet temperature into the SEV combustor. The following commercial implementation in the field has proven a reduction of MEL down to 26% plant load, corresponding to 18% gas turbine load. The extended operation range is emission compliant and provides frequency response capability at high plant efficiency. The experience accumulated over more than one year of successful commercial operation confirms the potential and reliability of the concept, which the customers are exploiting by regularly operating in the LPL range.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献