Numerical and Experimental Investigation of Thermo–Acoustic Combustion Instability in a Longitudinal Combustion Chamber: Influence of the Geometry of the Plenum

Author:

Laera Davide1,Gentile Andrea1,Camporeale Sergio M.1,Bertolotto Edoardo2,Rofi Luca2,Bonzani Federico2

Affiliation:

1. Politecnico di Bari, Bari, BA, Italy

2. Ansaldo Sviluppo Energia S.r.l., Genova, Italy

Abstract

This paper concerns the study of self–sustained combustion instabilities that occur in a test rig characterized by a single longitudinal combustion chamber equipped with a full scale industrial burner and a longitudinal plenum. The length of both plenum and combustion chamber can be continuously varied. During tests, at a fixed value of the length of the combustion chamber, a sensibility of the amplitude of pressure oscillations to the length of the plenum has been registered, while the frequency remained constant. To investigate this behavior, a linear stability analysis has been performed evaluating the influence of the length of the plenum on the frequency and growth rate of the registered unstable mode. The analysis has been performed by means of a finite element method (FEM) code with a three–dimensional distribution of the n-τ Flame Transfer Function (FTF) computed by means of computational fluid dynamics (CFD) simulations. According to the Rayleigh criterion, the distribution of the local Rayleigh index has been computed in order to evaluate the acoustic energy production, while the scattering matrix of the entire system has been used to evaluate the acoustic energy losses. Numerical results show that the reduction of the plenum length induces an increase of acoustic energy losses while the energy production remains almost constant. This result is in agreement with the reduction of the pressure oscillations amplitude observed during tests.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3