Application of the Transient Heat Transfer Measurement Technique in a Low Aspect Ratio Pin Fin Cooling Channel

Author:

Axtmann Meriam1,von Wolfersdorf Jens1,Meyer Georg1

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

Abstract

This study investigates on heat transfer enhancement in pin fin cooling channels. Experiments are conducted in a staggered pin fin array consisting of 15 rows. Heat transfer measurements are conducted in the pin fin cooling channel using the transient liquid crystal technique. The reference temperature is approximated by the fluid bulk temperature, acquired by thermocouples at specific positions. Thermal inertia of the used thermocouples is considered. One other problem that occurs while using relatively long thermocouples in short aspect ratio ducts is the heat conduction along the wires, the so called stem effect. This can lead to erroneous temperature measurements. The impact of the thermocouple immersion length on the temperature measurement is investigated. A detailed assessment of the space and time-wise varying temperature distribution is conducted for the appropriate reference temperature. This paper gives an overview about the experimental setup and the used transient measurement technique. Results are represented in terms of temperature distribution, heat transfer distribution and averaged Nusselt number at the endwall.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3