The Effect of Wavy Leading Edge on Low Speed Turbine Cascade Aerodynamic and Acoustic Performance

Author:

Tong Fan1,Qiao Wei-Yang1,Wang Liang-Feng1,Xu Kun-Bo1,Chen Wei-Jie1,Wang Xun-Nian2

Affiliation:

1. Northwestern Polytechnical University, Xi’an, China

2. State Key Laboratory of Aerodynamics of China, Mianyang, China

Abstract

LES and acoustic analogy are performed to investigate the effect of wavy leading edge on a linear low pressure turbine cascade aerodynamic performance and the turbulence cascade interaction noise. One straight leading edge cascade and two different wavy leading edge cascades are studied. In each case a rod with a diameter of 2.05mm is placed upstream of the cascade to produce wake which will then interact with the cascade leading edge. Results show that the wavy leading edge can reduce the turbulence cascade interaction noise peak by up to about 6∼8dB in narrow band and attenuate interaction broadband noise by about 3dB in the frequency range below 4000Hz. However, wavy leading edge can lead to a self noise increase in some frequency and increase cascade total pressure loss. Wavy leading edge can change the flow field near the leading edge while the further downstream flow field is altered only a little. The mechanism of noise reduction is also investigated. It is shown that wavy leading edge can reduce blade surface pressure fluctuation near the leading edge. In addition, the spatial-temporal correlation coefficient of pressure fluctuation near the blade leading edge is also decreased. These factors may work jointly and contribute to the final noise reduction.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3