LES and Hybrid RANS/LES Simulations of Turbomachinery Flows Using High Order Methods

Author:

Marty Julien1,Lantos Nicolas2,Michel Bertrand2,Bonneau Virginie3

Affiliation:

1. Onera – The French Aerospace Lab, Meudon, France

2. Onera – The French Aerospace Lab, Chatillon, France

3. SNECMA - SAFRAN Group, Villaroche, France

Abstract

The flow within turbomachinery applications is intrinsically complex and unsteady, and involves boundary layer transition, separation and vortices such as tip leakage vortex and wakes. Recent investigations show that Large Eddy Simulation and hybrid RANS/LES methods are required to accurately capture such flows. It is well-known that the numerical dissipation coming from the spatial discretization scheme must not be excessive because it can have a significant influence on the results. The present investigation assesses the impact of upwind spatial discretization scheme AUSM+(P) with high-order MUSCL extension at third- and fifth-order applied to different turbomachinery cases: (i) Large Eddy Simulation (LES) of laminar separation bubble over the high-lift low-pressure turbine airfoil T106C. The present investigation shows that the MUSCL extension to high-order is compatible with no-match boundaries and solution accuracy is not impacted. (ii) Zonal Detached Eddy Simulation (ZDES) of the first rotor of the transonic research compressor CREATE. Since a shock is present near the blade tip, a mixed scheme is developed in order to improve the robustness of the high-order scheme. The spectral analysis shows that the high-order scheme improves the resolution of small vortical structures. (iii) Zonal Detached Eddy Simulation of a fan rotor in order to well predict the broadband noise due the interaction between the fan wake and the OGV. Third and fifth order schemes are compared for both aerodynamic and acoustic purposes. The wake is well captured by the ZDES method and the velocity power spectral density is well predicted with this advanced method.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3