Ontology-Based Environmental Effectiveness Knowledge Application System for Optimal Reliability Design

Author:

Li Yu1,Sun Bo1,Wang Zili1,Ren Yi1

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, No. 37 XueYuan Road, Haidian, Beijing 100191, China e-mail:

Abstract

Environmental effectiveness refers to the influence and harm on products and materials resulting from the effects of various environmental factors. In their actual usage in a complex environment, products are put forward to address a series of urgent engineering problems caused by environmental effectiveness. However, environmental effectiveness is not extensively studied, and it is not sufficiently considered in the process of product reliability design and analysis. To solve these issues, we apply an ontology and rule reasoning method to design an ontology-based environmental effectiveness knowledge application system. The system comprises four layers: ontology, reasoning, data storage, and knowledge application. With the use of this system, specific measures for possible product failures caused by the environment can be deduced on the basis of the existing environment and failure data. This system can satisfy the requirements for extracting useful environmental effectiveness knowledge from large data to assist reliability designers in realizing complete reliability designs. A semi-intelligent analysis for environmental effectiveness can be applied to reliability analysis and design works. Finally, a case study of a rubber seal for environment protection design is presented to illustrate the applications of the system.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference43 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3