Manufacturing Multi-Matrix Composites: Out-of-Vacuum Bag Consolidation

Author:

Radhakrishnan Arjun1,Georgillas Ioannis2,Hamerton Ian1,Shaffer Milo S. P.3,Ivanov Dmitry S.1

Affiliation:

1. University of Bristol Bristol Composites Institute, , Bristol BS8 1TR , UK

2. University of Bath Department of Mechanical Engineering, , Bath BA2 7AY , UK

3. Imperial College London Department of Chemistry and Department of Materials, , London SW7 2AZ , UK

Abstract

Abstract The formation of porosity is a major challenge in any composite manufacturing process, particularly in the absence of vacuum assistance. Highly localized injection of polymer matrix into regions of interest in a dry preform is a route to manufacturing multi-matrix fiber-reinforced composites with high filler concentrations, which are otherwise difficult to achieve. Unlike traditional composites, such multi-matrix fiber-reinforced composite systems, which combine multiple resins in continuous form, offer improved structural performance around stress concentrators and multifunctional capabilities. As the process lacks vacuum assistance, porosity becomes a primary issue to be addressed. This paper presents a rheo-kinetic coupled rapid consolidation procedure for optimizing the quality of localized matrix patches. The procedure involves manufacturing trials and analytical consolidation models to determine the best processing program for minimal voidage in the patch. The results provide a step toward an efficient manufacturing process for the optimal design of multi-matrix composites without the need for complex vacuum bag arrangements, thus reducing cost and time while opening avenues to improve overall composite performance.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3