Affiliation:
1. Center for Advanced Turbomachinery and Energy Research (CATER), University of Central Florida, Orlando, FL 32816
Abstract
Abstract
In recent years, hydrogen-carrying compounds have accrued interest as an alternative to traditional fossil fuels due to their function as zero-emission fuels. As such, there is interest in investigating hydrogen-carrying compounds to improve understanding of the fuels' characteristics for use in high pressure systems. In the current study, the oxidation of ammonia/natural gas/hydrogen mixtures was carried out to study carbon monoxide (CO) formation profiles as well as the ignition delay times (IDTs) behind reflected shock waves in order to refine chemical kinetic models. Experiments were carried out in the University of Central Florida's shock tube facility by utilizing chemiluminescence to obtain OH* emission and laser absorption spectroscopy to obtain CO profiles over a temperature range between 1200 K and 1800 K with an average pressure of 2.2 atm. Experimental mixtures included both neat and combination natural gas/hydrogen with ammonia addition, with all mixtures except one having an equivalence ratio of 1. Results were then compared with the GRI 3.0 mechanism, as well as the newly developed UCF 2022 mechanism utilizing chemkin-pro software. In general, both models were able to capture the trend in auto-ignition delay times and CO time histories for natural gas and ammonia mixtures. However, for ammonia–hydrogen mixtures, GRI 3.0 failed to predict ignition delay times, whereas the UCF 2022 mechanism was able to capture the IDTs within the uncertainty limits of the experiments. A sensitivity analysis was conducted for different mixtures to understand the important reactions at the experimental conditions. Finally, a reaction pathway analysis was carried out to understand important ammonia decomposition pathways in the presence of hydrogen and natural gas.
Funder
National Aeronautics and Space Administration
U.S. Department of Energy
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献