Affiliation:
1. Columbia University, New York, NY 10027
Abstract
The influence of fluid inertia on a plane slider bearing that operates at a 0(1) modified Reynolds number is examined in this study. The flow is laminar, and the Reynolds number—based on the slider velocity, lubricant kinematic viscosity, and leading-edge slider height—can be as high as 1000. Our major conclusion is that the primary effect of fluid inertia is to raise the pressure boundary condition near the bearing leading-edge. Lubrication theory is used to determine the pressure in the fluid film in the region downstream of the bearing entry. The leading-edge pressure increase caused by convective inertia is determined by a mass-flux balance between the flow near the leading-edge, and the flow through the bearing gap, which is determined by lubrication theory. Analytical results are obtained both for the convective-inertia pressure at the bearing entrance and for the pressure under the slider bearing. Results are compared to other numerical calculations and to analytical results, where the fluid inertia terms were kept throughout the bearing gap.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献