Singularity Avoidance for a Deployable Mechanism Using Elastic Joints

Author:

Zhang Tieshan1,Huang Hailin23,Guo Hongwei4,Li Bing567

Affiliation:

1. Harbin Institute of Technology, Shenzhen 518055, China e-mail:

2. Harbin Institute of Technology, Shenzhen 518055, China;

3. State Key Laboratory of Robotics and System (HIT), Harbin 150001, China e-mail:

4. Harbin Institute of Technology, Harbin 150001, China e-mail:

5. State Key Laboratory of Robotics and System (HIT), Harbin 150001, China;

6. Harbin Institute of Technology, Shenzhen 518052, China;

7. Shenzhen Key Lab of Mechanisms and Control in Aerospace, Shenzhen 518055, China e-mail:

Abstract

This paper aims at dealing with the deployment vibration problem of the rigid-links deployable mechanism caused by mobility bifurcation. A triangular prismoid deployable mechanism with mobility bifurcation is employed as an example to demonstrate the design and analysis process. First, the mobility of the triangular prismoid deployable mechanism is analyzed, which shows that there exists mobility bifurcation and the possibility of deployment vibration. Second, the revolute joints that introduce mobility bifurcation are analyzed, which shows that they can be replaced by the elastic joints without changing its mobility. Third, a detailed design procedure for this type of elastic joints is discussed; the main parameters of the elastic joints can then be determined based on the mobility and motion range of the deployable mechanism. Physical prototypes of both the rigid-links prismoid deployable mechanism and the corresponding improved mechanism with elastic joints are fabricated, and the deployment experiments of both mechanisms are conducted to show improvement in the latter mechanism.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3