Identification of Squeeze Film Damper Force Coefficients From Multiple-Frequency Noncircular Journal Motions

Author:

Delgado Adolfo1,San Andrés Luis21

Affiliation:

1. Department of Mechanical Engineering. Texas A&M University, College Station, TX 77843

2. Fellow ASME

Abstract

In rotor-bearing systems, squeeze film dampers (SFDs) provide structural isolation, reduce amplitudes of rotor response to imbalance, and in some instances, increase the system threshold speed of instability. SFDs are typically installed at the bearing supports, either in series or in parallel. In multispool engines, SFDs are located in the interface between rotating shafts. These intershaft dampers must ameliorate complex rotor motions of various whirl frequencies arising from the low speed and the high speed rotors. The paper presents experiments to characterize the forced response of an open ends SFD subject to dynamic loads with multiple frequencies, as in a jet engine intershaft damper. The test rig comprises of a stationary journal and a flexibly supported housing that holds the test damper and instrumentation. The open ends SFD is 127 mm in diameter, 25.4 mm film land length, and has a radial clearance of 0.125 mm. The damper is lubricated with ISO VG 2 oil at room temperature (24°C, feed pressure 31 kPa). In the experiments, two orthogonally positioned shakers deliver forces to the test damper that produce controlled amplitude motions with two whirl frequencies, one fixed and the other one varying over a specified range that includes the test system natural frequency. The test data collected, forces and motions versus time, are converted into the frequency domain for parameter identification. The identified viscous damping coefficients are strong functions of the amplitude of journal motion, lying within predictions from classical formulas for circular centered orbits and small amplitude motions about an eccentric journal position. The damper inertia coefficients agree well with predictions derived from a fluid flow model that includes the effect of the feed groove.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3