Generalized Kinematic Modeling Method for Reconfigurable Machine Tools

Author:

Moon Yong-Mo1,Kota Sridhar1

Affiliation:

1. University of Michigan

Abstract

Abstract Using a library of machine modules, modular machine tools are being developed by many machine tool manufacturers to reduce design lead time. To accommodate frequent changes in product design in a timely and cost-effective manner, the next generation of machine tools should be reconfigurable to process a family of products. This enables reduction not only in machine design lead time but more significantly a reduction in machine set-up and ramp-up time. The essential characteristics of Reconfigurable Machine Tools (RMTs) include modularity, convertibility, flexibility, and cost-effectiveness. Currently there is no systematic method of designing modular machines, let alone reconfigurable machines. This paper presents a methodology for kinematic synthesis of machine tools using screw theory. The motion characteristics of a set of desired machining tasks as well as stored library of machine modules are captured in a common representation scheme. A simple design example to illustrate the application of this methodology for systematic selection and synthesis of reconfigurable machine tools is presented. The proposed methodology can be extended to include the dynamic characteristics and control schemes to enable integrated design of machines and controllers.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heuristic algorithm to optimize the manufacturing system design to get maximum profit;International Journal on Interactive Design and Manufacturing (IJIDeM);2008-10

2. RECONFIGURABLE MANUFACTURING SYSTEM FOR AGILE MANUFACTURING;IFAC Proceedings Volumes;2006

3. Parallel Structures and Their Applications in Reconfigurable Machining Systems;Journal of Manufacturing Science and Engineering;2002-04-29

4. Design of Reconfigurable Machine Tools;Journal of Manufacturing Science and Engineering;2002-04-29

5. Dynamic stiffness evaluation for reconfigurable machine tools including weakly non-linear joint characteristics;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2002-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3