A Framework for Closed-Form Displacement Analysis of 10-Link 1-DOF Mechanisms

Author:

Dhingra A. K.1,Almadi A. N.1,Kohli D.1

Affiliation:

1. University of Wisconsin - Milwaukee

Abstract

Abstract This paper presents a closed-form approach, based on the theory of resultants, to the displacement analysis problem of planar 10-link 1-DOF mechanisms. Since each 10-link mechanism has 4 independent loops, its displacement analysis problem can be written as a system of 4 reduced loop-closure equations in 4 unknowns. This system of 4 reduced loop closure equations, for all non-trivial mechanisms resulting from 230 10-link kinematic chains, can be classified into 22 distinct structures. Using the successive and repeated elimination procedures presented herein, it is shown how each of these structures can be reduced into a univariate polynomial devoid of any extraneous roots. This univariate polynomial corresponds to the input-output (I/O) polynomial of the mechanism. Based on the results presented, it can be seen that the displacement analysis problem for all 10-link 1-DOF mechanisms is completely solvable, in closed-form, devoid of any extraneous roots.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3