Decoupled and Homokinetic Transmission of Rotational Motion via Constant-Velocity Joints in Closed-Chain Orientational Manipulators

Author:

Carricato Marco1

Affiliation:

1. Department of Mechanical Engineering (DIEM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, BO, Italy

Abstract

This paper presents novel 2DOF and 3DOF closed-chain orientational manipulators, whose end-effector motion is actuated in a decoupled and homokinetic way by frame-located motors via holonomic transmissions based on constant-velocity couplings. The functioning of these couplings is investigated and the conditions applying for homokinetic transmission to be preserved during simultaneous motor drive are revealed and implemented. As a result, decoupled and configuration-independent relations between the motor rates and the time-derivatives of the variables describing the end-effector orientation are achieved. The attainment of analogous relations between the motor speeds and the components of the end-effector angular velocity is conversely proven to be unfeasible. The problem of singularities is furthermore examined, showing that input-output homokinesis is not a sufficient condition for a globally uniform kinetostatic behavior of the mechanism, which may, indeed, possibly reach uncertainty singular configurations. The connecting chains of the most typical constant-velocity couplings are analyzed, in order to obtain analytical expressions for the functions on which such singularities depend. The influence of design parameters is accordingly inspected. The results are valuable for the type and dimension synthesis of closed-chain wrists free from direct kinematic singularities, and characterized by simple kinematics and regular input-output kinetostatic relations.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3