Design and Biomechanical Analysis of a Novel Retrievable Peripheral Vascular Stent

Author:

Guo Jingzhen1,Mao Lin1,Yu Xitong1,Song Chengli1,Zhao Xue2

Affiliation:

1. Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China

2. Department of Cardiology, Shanghai Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438, China

Abstract

Abstract Structurally retrievable drug-eluting stents may have valuable clinical applications because they do not leave any foreign materials inside the patient's body. This article presents a novel design of retrievable peripheral vascular stent and the results from biomechanical analysis of its performance. Using the finite element analysis method, principal parameters of the stent were studied. Moreover, to ensure the practicability of the retrieval process, simulation, and in vitro experiments were performed. The retrieval force reached the maximum value when the whole retrievable part had been retrieved. Furthermore, the force was gradually increased during the retrieval process and remained constant after the main part had been retrieved. When the stent was being compressed, the maximum strain of the stent occurred at the connection between the stent's retrieval part and the main body part, at a value of 4%. The index of nonuniformity of the stent was too small to be counted both at the end of the compression and self-expansion processes. With the increase of moment, the bending stiffness (EI) of the stent decreased gradually. After bending moment was applied, the large strain region was mainly located in the stent's main body part rather than the retrieval part. The results of preliminary stent retrieval experiments demonstrated that the stent could be retrieved successfully. This novel retrievable stent displays promising biomechanical performance. The preliminary experiments demonstrated that the stent could be retrieved smoothly from the blood vessels.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3