Modeling the Mechanism of Water Flux in Fractured Gas Reservoirs With Edge Water Aquifers Using an Embedded Discrete Fracture Model

Author:

Geng Shaoyang1,Li Chengyong23,Zhai Shuo1,Gong Yufeng1,Jing Min1

Affiliation:

1. Chengdu University of Technology Energy College, , Chengdu 610059 , China

2. Chengdu University of Technology Energy College, , Chengdu 610059 , China ;

3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Chengdu 610059 , China

Abstract

Abstract The invasion of aquifers into fractured gas reservoirs with edge water aquifers leads to rapid water production in gas wells, which reduces their gas production. Natural fractures accelerate this process. Traditional reservoir engineering methods cannot accurately describe the water influx, and it is difficult to quantitatively characterize the influence of aquifer energy and fracture development on production, which prevents aquifer intrusion from being effectively addressed. We divided the water influx of edge water aquifers in fractured gas reservoirs into three patterns: tongue-like intrusion in the matrix, tongue-like intrusion in fractures, and channel intrusion in fractures. Detailed numerical modeling of the water influx was performed using an embedded discrete fracture model (EDFM) to predict gas production. Because the strength of the aquifer and the conductivity of natural fractures have different effects on water influx, the effects of aquifers and natural fractures on the gas production of wells under the three water influx modes were studied. The results show that tongue-like intrusions lead to a stronger initial gas production of gas wells, which then become weaker after the wells are flooded, and the intrusions such as channeling in fractures cause the gas well to be flooded quickly. However, not all water influxes are unfavorable for gas production. Aquifers with water energy similar to gas formation and natural fractures with weak conductivity can improve the production of gas wells.

Funder

National Natural Science Foundation of China

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3