Affiliation:
1. North Carolina State University Department of Mechanical and, Aerospace Engineering, , 1840 Entrepreneur Drive, Raleigh, NC 27695
Abstract
Abstract
This study investigates the viability and performance of certain synthetic fuels in spark ignition internal combustion engine based stationary power generation wherein the fuel comprises a mixture of methane and ethane in high dilutions of carbon dioxide (CO2). The fuel of concern is a byproduct of a novel method for producing ethylene from ethane. The byproduct gas mixture has a concentration of approximately 41% CO2, 40% ethane, and 5% methane by weight along with other minor compounds. Varying mixtures of ethane and methane combined with between 42% and 46% by weight CO2 were used to evaluate the viability and efficiency of this fuel to operate in existing internal combustion engines as a means of reducing emissions and increasing industrial process efficiency. A 13 hp gasoline generator was repurposed as a test stand by incorporating a modified fuel induction system and instrumentation for data collection. A gas metering and mixing system was installed to precisely control the mass flow of gases induced into the engine. Various instrumentations were installed to monitor in-cylinder pressure, temperature at various locations, emissions, and fuel and airflow rates. Varying fuel mixtures and loads were tested and compared to gasoline. It was found that under a high load, the mixed gas was able to generate comparable thermal efficiency and power to gasoline. But under no load or a part load condition the indicated thermal efficiency was found to be about 21% lower than that of gasoline. Further, the mixed gas also resulted in up to 50% reduction in CO and NOx emissions when compared to gasoline.
Funder
U.S. Department of Energy
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献