The Effect of Rectangular Confinement Aspect Ratio on the Flame Transfer Function of a Turbulent Swirling Flame

Author:

Ånestad Aksel1,Ahn Byeonguk1,Nygård Håkon T.1,Worth Nicholas A.1

Affiliation:

1. Department of Energy and Process Engineering, Norwegian University of Science and Technology , Trondheim 7034, Norway

Abstract

Abstract The flame transfer function (FTF) has been experimentally investigated for a premixed, turbulent and highly swirled flame in rectangular enclosures with varying aspect ratio. A range of equivalence ratios and inlet bulk velocities are considered to vary the length of the flame. Increasing confinement is also shown to increase flame length. More confined flames become increasingly asymmetric, with significant changes to the mean flame shape. Characteristic peaks and dips are observed in the FTF gain for several configurations, caused by constructive and destructive interference between different sources of flow perturbations. Changes in the geometrical confinement distinctly affects these interactions, with FTFs in the most confined chamber containing more pronounced peaks and dips. Analysis of the phase-averaged dynamics has been conducted for two limiting operational conditions in the least and most confined enclosures: a short flame at a low bulk velocity and high equivalence ratio condition; and a long flame at a high velocity and low equivalence ratio condition. The analysis of the short flames shows similar behavior in both enclosures, both in terms of the global response and the local structure of the heat release rate oscillations. Small differences in local response symmetry in the flame due to the close confinement do not affect the global flame response. By comparison, close confinement significantly affects the symmetry of the flame dynamics in the long flame. However, the changes in symmetry do not significantly modify the response, and more important is the change in flame length, which significantly alters the cutoff frequency, reducing the gain at high frequencies.

Funder

Norges Forskningsråd

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference42 articles.

1. Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions;J. Fluid Mech.,2020

2. Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling,2002

3. Assessment of Methods for the Computation of the Linear Stability of Combustors;Combust. Sci. Technol.,2003

4. Thermoacoustic Modeling and Control of Multi Burner Combustion Systems,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling of Flame Describing Functions in Premixed Swirling Flames;Flow, Turbulence and Combustion;2023-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3