Performance of Position, Force, and Impedance Controllers for a Pneumatic Cylinder Ankle Exoskeleton

Author:

Schmitthenner Dave1,Martin Anne E.1

Affiliation:

1. Department of Mechanical Engineering, Pennsylvania State University , University Park, PA 16802

Abstract

Abstract The best exoskeleton control strategy depends on the task, motivating the development and analysis of an exoskeleton capable of position, force, and impedance control. In this paper, we implement and compare the three controller types via sliding mode control on a custom-built pneumatic cylinder ankle exoskeleton. To evaluate each controller's performance, the exoskeleton was tested on the benchtop and with human subject experiments. With the position controller, the exoskeleton achieved an root-mean-square error (RMSE) of under 5 deg for both the benchtop and human tests. It had a bandwidth of approximately 12 rad/s. The force controller tracked sinusoidal trajectories acceptably well at low frequencies (15% of force range at 6 rad/s), with a bandwidth of approximately 24 rad/s. The error was significantly higher (RMSE of 24% of force range) for the more biologically relevant trajectory. The impedance controller demonstrated the desired spring-like behavior, with position RMSE generally under 5 deg compared to expected position. All three controllers worked equally well for benchtop and human tests. Thus, a pneumatically powered ankle exoskeleton with sliding mode control is capable of accurate position and impedance control and is capable of marginally acceptable force control.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference38 articles.

1. Design and Development of Lower Limb Exoskeletons: A Survey;Rob. Auton. Syst.,2017

2. Feasibility and Effectiveness of Repetitive Gait Training Early After Stroke: A Systematic Review and Meta-Analysis;J. Rehabil. Med.,2019

3. Clinical Effectiveness and Safety of Powered Exoskeleton-Assisted Walking in Patients With Spinal Cord Injury: Systematic Review With Meta-Analysis;Med. Dev. Evid. Res.,2016

4. Recent Development of Mechanisms and Control Strategies for Robot-Assisted Lower Limb Rehabilitation;Mechatronics,2015

5. Robot Assisted Treadmill Training: Mechanisms and Training Strategies;Med. Eng. Phys.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3