Affiliation:
1. Center for Gas Turbines and Power, The Pennsylvania State University, University Park, PA 16802
Abstract
The results from the area traverse measurements of the unsteady total temperature using a high-response aspirating probe downstream of the second stator of a three-stage axial flow compressor are presented. The measurements were conducted at the peak efficiency operating point. The unsteady total temperature data are resolved into deterministic and unresolved components. Hub and casing regions have high levels of unsteadiness and consequently high levels of mixing. These regions have significant levels of shaft resolved and unresolved unsteadiness. Comparisons are made between the total temperature and the total pressure data to examine the rotor 2 wake characteristics and the temporal variation of the stator exit flow. Isentropic efficiency calculations at the midpitch location show that there is about a 4 percent change in the algebraically averaged efficiency across the blades of the second rotor and if all the rotor 2 blades were behaving as a “best” blade, the improvement in efficiency would be about 1.3 percent. An attempt is made to create a composite flow field picture by correlating the unsteady velocity data with temperature and pressure data.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献