Regional Quantification of Brain Tissue Strain Using Displacement-Encoding With Stimulated Echoes Magnetic Resonance Imaging

Author:

Pahlavian Soroush Heidari1,Oshinski John2,Zhong Xiaodong3,Loth Francis1,Amini Rouzbeh4

Affiliation:

1. Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, 264 Wolf Ledges Parkway 1st floor, RM 211b, Akron, OH 44325 e-mail:

2. Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 e-mail:

3. MR R&D Collaborations, Siemens Healthcare, 1364 Clifton Road NE, Atlanta, GA 30322; Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, GA 30322 e-mail:

4. Department of Biomedical Engineering, Conquer Chiari Research Center, The University of Akron, 260 S Forge Street, Olson Research Center Room 301F, Akron, OH 44325 e-mail:

Abstract

Intrinsic cardiac-induced deformation of brain tissue is thought to be important in the pathophysiology of various neurological disorders. In this study, we evaluated the feasibility of utilizing displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify two-dimensional (2D) neural tissue strain using cardiac-driven brain pulsations. We examined eight adult healthy volunteers with an electrocardiogram-gated spiral DENSE sequence performed at the midsagittal plane on a 3 Tesla MRI scanner. Displacement, pixel-wise trajectories, and principal strains were determined in seven regions of interest (ROI): the brain stem, cerebellum, corpus callosum, and four cerebral lobes. Quantification of small neural tissue motion and strain along with their spatial and temporal variations in different brain regions was found to be feasible using DENSE. The medial and inferior brain structures (brain stem, cerebellum, and corpus callosum) had significantly larger motion and strain compared to structures located more peripherally. The brain stem had the largest peak mean displacement (PMD) (187 ± 50 μm, mean ± SD). The largest mean principal strains in compression and extension were observed in the brain stem (0.38 ± 0.08%) and the corpus callosum (0.37 ± 0.08%), respectively. Measured values in percent strain were altered by as much as 0.1 between repeated scans. This study showed that DENSE can quantify regional variations in brain tissue motion and strain and has the potential to be utilized as a tool to evaluate the changes in brain tissue dynamics resulting from alterations in biomechanical stresses and tissue properties.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3