Steady-State Crack Propagation in Pressurized Pipelines Without Backfill

Author:

Kanninen M. F.1,Sampath S. G.1,Popelar C.2

Affiliation:

1. Battelle Columbus Laboratories, Columbus, Ohio

2. The Ohio State University, Columbus, Ohio

Abstract

In a previous paper, a simplified dynamic-shell theory representation was formulated for steady-state motion in a pipeline without backfill. The present work extends this model by (1) incorporating a gas dynamics treatment to determine the axial variation in the pressure exerted by the gas on the pipe walls, and (2) incorporating a plastic yield hinge behind the crack tip. Solutions to the governing dynamic equations are obtained for these conditions and used to calculate the steady-state dynamic energy release rate as a function of crack speed. In the single full-scale experiment in which an independent estimate of the dynamic fracture energy is available for a pipe without backfill, the model predicts a steady-state speed of 780 fps. This can be compared with measured speeds which ranged from 725 to 830 fps in the test. Because the calculated steady-state dynamic energy release rate exhibits a maximum, it is suggested that this approach may offer a basis for crack arrest design of pipelines.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study of unstable crack propagation velocity for X80 pipeline steel;Fatigue & Fracture of Engineering Materials & Structures;2018-11-22

2. An engineering model for rapid crack propagation along fluid pressurized plastic pipe;Engineering Fracture Mechanics;2012-12

3. Dynamic crack propagation in steel line pipes. Part I: Experimental investigation;Engineering Fracture Mechanics;2005-11

4. Fundamentals of Fracture Mechanics;Mechanical Properties of Engineered Materials;2002-11-20

5. Dynamic failure mechanics;International Journal of Solids and Structures;2000-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3