Performance Evaluation of Linear Turbine Cascades Using Three-Dimensional Viscous Flow Calculations

Author:

Moore J.1,Moore J. G.1

Affiliation:

1. Mechanical Engineering Dept., Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

The overall performance of two geometrically similar linear turbine cascades is calculated using an elliptic flow program. The increase in the mass-averaged total pressure loss is calculated within and downstream of the cascades and the results show good agreement with the measured values. The buildup and decay of the secondary kinetic energy are also shown; measurements are available for one of the cascades near and downstream of the trailing edge and these are in close agreement with the calculated values. Details of the flow development are also compared with measurements. Calculated velocity vectors near the endwall show the overturning revealed by surface flow visualization and similarly near the suction surface the strong spanwise flow is well calculated. Calculated contours of total pressure loss in cross-sectional planes confirm the important interaction of the passage vortex with the profile boundary layer at midspan. Regions of high loss near midspan are calculated downstream of both cascades; this three-dimensional flow development is followed in the calculations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow;Journal of Fluids Engineering;2016-01-05

2. Overview of Turbine Design;Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics;2014-01-01

3. References;Aerothermodynamics of Turbomachinery;2010-04-27

4. Computational Approaches for Aerospace Design;2005-06-24

5. Numerical study on the bubbly flow around a hydrofoil in pitching and heaving motions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2003-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3