Potential of Future Thermoelectric Energy Recuperation for Aviation

Author:

Bode Christoph1,Friedrichs Jens2,Somdalen Ragnar3,Köhler Jürgen4,Büchter Kai-Daniel5,Falter Christoph6,Kling Ulrich6,Ziolkowski Pawel7,Zabrocki Knud8,Müller Eckhard8,Kožulović Dragan9

Affiliation:

1. Institute of Jet Propulsion and Turbomachinery, University of Braunschweig, Hermann-Blenk-Str. 37, Braunschweig 38108, Germany e-mail:

2. Institute of Jet Propulsion and Turbomachinery, University of Braunschweig, Hermann-Blenk-Str. 37, Braunschweig 38108, Germany

3. Institute of Thermodynamics, University of Braunschweig, Hans-Sommer-Str. 5, Braunschweig 38106, Germany

4. Institute of Thermodynamics, University of Braunschweig, Hans-Sommer-Str. 5, Braunschweig 38106, Germany e-mail:

5. Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, Taufkirchen 82024, Germany e-mail:

6. Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Str. 1, Taufkirchen 82024, Germany

7. Institute of Materials Research, German Aerospace Center (DLR), Linder Höhe, Cologne 51147, Germany e-mail:

8. Institute of Materials Research, German Aerospace Center (DLR), Linder Höhe, Cologne 51147, Germany

9. Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Science, Berliner Tor 5, Hamburg 20099, Germany e-mail:

Abstract

Germany's Fifth Aeronautical Research Program (LuFo-V) gives the framework for the thermoelectric energy recuperation for aviation (TERA) project, which focuses on the positioning of thermoelectricity by means of a holistic reflection of technological possibilities and challenges for the adoption of thermoelectric generators (TEG) to aircraft systems. The aim of this paper is to show the project overview and some first estimations of the performance of an integrated TEG between the hot section of an engine and the cooler bypass flow. Therefore, casing integration positions close to different components are considered such as high-pressure turbine (HPT), low-pressure turbine (LPT), nozzle, or one of the interducts, where the temperature gradients are high enough for efficient TEG function. TEG efficiency is then to be optimized by taking into account occurring thermal resistance, heat transfer mechanisms, efficiency factors, as well as installation and operational system constrains like weight and space.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference23 articles.

1. European Aeronautics: A Vision for 2020—Meeting Society's Needs and Winning Global Leadership,2001

2. Flightpath 2050 Europe's Vision for Aviation,2011

3. GasTurb 12: Design and Off-Design Performance of Gas Turbine Engines,2013

4. Conversion Efficiency and Figure of Merit,1995

5. Wallace, T., 2011, “Development of Marine Thermoelectric Heat Recovery Systems,” DoE Thermoelectric Applications Workshop, San Diego, CA.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3